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CRACK GENERATION AND PROPAGATION MECHANISM 

V. V. Struzhanov UDC 539.3 

As the load increases, a solid body goes over from one stable equilibrium position to 
another. The dynamic opening of cracks can be treated as buckling with a subsequent jump- 
like passage to a new stable position. Consequently, the mathematical methods of studying 
the equilibrium, stability, and buckling of mechanical systems, in particular the apparatus 
of catastrophe theory, can be used to analyze the carrying capacity, crack formation and pro- 
pagation, and rupture. As has been noted in [i], the descending branches of the laws of 
system element interaction are here of substantial value since they permit the determination 
of all the possible equilibrium positions. 

In this paper, an approach based on studying equilibrium positions by catastrophe theory 
methods is used to analyze the behavior of some of the simplest discrete models of a solid 
in the form of atomic lattices subjected to load. The process of crack formation and opening 
is represented graphically up to rupture. 

i. Let us first examine a model representing several parallel series of atoms (Fig. la). 
The interaction force between the first two series, referred to the unit of length of these 
series is given by the function [i] 

= Ex exp (.--Tx/x~, 

where x i s  t h e  m a g n i t u d e  o f  t h e  change  in  t h e  d i s t a n c e  be tween s e r i e s ,  x f  i s  t h e  v a l u e  o f  x 
c o r r e s p o n d i n g  t o  t h e  maximal  f o r c e ,  and E i s  Y o u n g ' s  modulus .  I n  c o n t r a s t  t o  [ 1 ] ,  we assume 
t h a t  i n  r emoving  t h e  l o a d  t h e  i n t e r a c t i o n  f o r c e  changes  a c c o r d i n g  t o  t h e  l i n e a r  law E(x - x e)  
f o r  f i x e d  x e .  Here x H i s  t h e  i n e l a s t i c  component  o f  t h e  d i s p l a c e m e n t  x,  x H = x[1  - exp • 
( - x / x f ) ] .  The i n t e r a c t i o n  f o r c e  be tween t h e  s e r i e s  b and d r e f e r r e d  t o  t h e  l e n g t h  u n i t  i s  
d e t e r m i n e d  by t h e  e x p r e s s i o n  r  = Ec-Xy,  where y i s  t h e  m a g n i t u d e  o f  t h e  change  in  s p a c i n g ,  
and c i s  a n u m e r i c a l  p a r a m e t e r  t a k i n g  a c c o u n t  o f  t h e  p l i a b i l i t y  o f  t h e  s y s t e m  o f  a t o m i c  s e -  
r i e s  between b and d. The h i g h e r  such  s e r i e s ,  t h e  h i g h e r  t h e  v a l u e  o f  c .  

Keeping  t h e  s e r i e s  a f i x e d ,  we s t r e t c h  t h e  sy s t em q u a s i s t a t i c a l l y  by g i v i n g  a d i s p l a c e -  
ment u t o  t h e  s e r i e s  d ( s t i f f  l o a d i n g ) .  The s t r a i n  p o t e n t i a l  e n e r g y  h e r e  i s  

x 

H = ~ Cdx + (u -- x) 2 E/2c. 
0 

I t  i s  n a t u r a l  t o  c a l l  t h e  v a r i a b l e  x t h e  s t a t e  p a r a m e t e r  and u ,  c t h e  c o n t r o l  p a r a m e t e r s .  
Then t h e  f u n c t i o n  H can be c o n s i d e r e d  as a t w o f p a r a m e t e r  f a m i l y  o f  f u n c t i o n s  H:S • C, where  
S = R i s  t h e  s p a c e  o f  s t a t e s  ( x ~ S ) ,  C = R X R = R 2  i s  t h e  c o n t r o l  s p a c e  ((u, e ) ~ c ) ,  and R 
i s  t h e  s e t  o f  r e a l  numbers .  

The c r i t i c a l  p o i n t s  o f  t h e  f u n c t i o n  H a r e  d e t e r m i n e d  by t h e  e q u a t i o n  

OH/Ox = Ex e x p ( - - x ~ f )  - - ( u - - x ) E / c  = O: ( 1 . 1 )  

For  t h e s e  v a l u e s  o f  (u ,  c )  a l l  t h e  e q u i l i b r i u m  p o s i t i o n s  o f  t h e  s y s t e m  e v i d e n t l y  a r e  o b t a i n e d  
by s o l v i n g  ( 1 . 1 ) .  The s e t  o f  t h e s e  s o l u t i o n s ,  t h e  p o i n t s  (x ,  u ,  c)  fo rm a m a n i f o l d  o f  t h e  
c a t a s t r o p h e  M in  t h r e e - d i m e n s i o n a l  s p a c e  [ 2 ] .  I t  has  t h e  form o f  a s u r f a c e  w i t h  a b u i l d - u p  
and i s  shown in  F i g .  l b .  Here and h e n c e f o r t h  x f  = 0 . 4 .  

The d o u b l y  and t r i p l y  d e g e n e r a t e  c r i t i c a l  p o i n t s  a r e  d e t e r m i n e d  form t h e  j o i n t  s o l u t i o n  
of (i.i) and [3] 

~ZH/SxZ= E(t --  x / ~ ) e x p  (~x/x f )  + E/c = O ( 1 . 2 )  
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(the Hessian of the function H equals zero) 

03H/O~ = (E/xf)~/xf'-- 2) exp (--x/x~ = 0. (1,3) 

Solving (1.1)-(1.3) we find the triply degenerate critical point (x = 2xf, u = 4xf, c = c a ) 
the beginning of the build-up, and from (i.i) and (1.2) a singular set of the manifold M con- 
sisting of doubly degenerate points [x, u = x2(x - xf) -I, c = xf(x - xf) -lexp(-x/xf)] that 
form the curve of the fold L (Fig. ib). 

The transform of the singular set to map the catastrophe M in the control space x:M ~ C, 
projecting the points of M on the uc plane accordingto the rule (x, u, c) + (u, c), is called 
a bifurcation set B and is the place where the number and nature of the critical points change 
[2]. In this case it consists of the curves B I and B 2 (Fig. Ib). 

Let us set c = 5. Then the loading path at C is entirely in the domain I exterior with 
respect to the set B (Fig. ib, line i). Just one sheet of the surface M, that the nondegen- 
erate critical points corresponding to the stable equilibrium positions of the system form, 
will lie above the points of the domain I. Consequently, during loading the system goes 
smoothly over from one stable position to another (curve i') until rupture, separation of the 
atomic series a and b to such a distance that the interaction force between them is negligibly 
small. 

Now let c = i0. In this case the path in C (the line 2 in Fig. ib) starts to traverse 
the domain I, and the path traversed by the equilibrium position in M and lying above it in C 
(curve 2' in Fig. ib) is on the upper sheet of the surface M. We then drop into the domain 
II above which there are three sheets and three equilibrium positions, respectively: the un- 
stable ones correspond to points of the surface M on the middle sheet within the curve of 
the fold, and the stable ones to points outside the curve of the fold. However, in conform- 
ity with the delay principle [2], the path in M is on the upper sheet until it no longer 
passes through the fold, i.e., does not drop in at the degenerate critical point and the 
sheet on which it is found does not "vanish." This happens for u, = 1.94. If u, is later 
disturbed by adding the term 7u,, then for arbitrarily small 7 > 0 a nondegenerate critical 
point appears that already lies on the lower sheet of the surface M. Then the path in M jumps 
from one sheet of the surface to another. Such jumps are called catastrophic [2]. They occur 
when the path in C leaves the domain II (intersects the curve B 2) and smooth changes in con- 
trol cause discontinuous changes of state. 

The energy in the system drops during the jump. Consequently, in inertia it skips the 
equilibrium position lying on M (the point k with the coordinates x = 1.696, u = 1.94, Fig. 
ib), and remains there where the energy level is restored (the point k' with the coordinates 
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x = 2.244, u = 1.94). Hence, only the series b moves. Then the system again tends to an 
equilibrium position. However, the interaction force between the atoms a and b now changes 
according to a linear unloading law. Then (i.i) takes the form 

E ( x - - x H ) - - E ~ ( u "  x) = 0 ,  x . = 2 . 2 3 6 .  

Hence, the equilibrium position that the system tends to occupy, is determined by the point 
k" (x = 2.209, u = 1.94) that does not lie on the manifold M. Near this position, oscilla- 
tions occur that damp out because of the internal friction in the system. Now computing the 
forces we find that the tensile forces are replaced by a compression force 0.0268E because 
the jump. 

Since the series a and b interact according to the law of the descending branch of the 
curve ~ after the jump, it can then be considered that a sudden disturbance of the prolate- 
ness occurred [i] a crack was formedbetween whose edges aweak interactionis however conserved. 

If the loading is continued, then k between u, and u = x H the system is unloaded. Then 
a loading occurs during which the interaction forces are linear, and for u = 2.326 we again 
emerge on the manifold M. Later the deformation proceeds smoothly to final rupture. 

Remark i. The crack is propagated spontaneously if the quantity of elastic energy being 
liberated exceeds the energy being consumed in its growth, and stops when the magnitudes 
of these energies are equal (the reading is made from the start time). For instance, the 
elastic energy at the point k diminished by 0.0088Es ~ (s is the unit of length), and the ex- 
penditures in crack formation are 0.0785Es ~, i.e., the crack continues to grow. The stop 
occurs at the point k' where the mentioned quantities are commensurate. 

Remark 2. An analogous investigation is possible even for soft loading. In this case 
the system behavior is described by the total potential energy function, where the control 
parameters c and P are equivalent uniformly distributed forces applied to the atoms of the 
series d while the state parameters are u and x. Rupture always occurs for P > max ~, where 
the parameter u certain reaches that magnitude for which an abrupt drop in the strain poten- 
tial energy occurs in the system for c > e = during rupture. Hence, the total, and therefore 
the kinetic energy grow explosively, rupture is accelerated sharply. 

2. As the second model we consider a simplified atomic lattice in which there is a de- 
fect, there is no central atom in the series a (Fig. 2a). There are n identical atomic series 
between the series b and d. We assume that the force needed to separate the atoms in the 
series b and d are opposite each other at a distance v (measuring from the initial state), 
and referred to the length unit is 

0 1  = 0 , 7 2 ( n  + i ) - l E ( v  --_ v . ) ,  v .  v [ i  - -  e x p  ( - - v / ( n +  i ) ) ] .  

For the force of the interaction between atoms 1--2, 2--3, 3-4, 4--5, 3-6, 2--7 let us suggest 
the expression 

~2 = E(w --  w.) ,  w~ = w[i  - -  e x p  ( - - 2 , 5 w ) ] .  

8 9 6  
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The interaction between the atoms 1 -7, 2-6, 3--7, 3-5, 4--6 will be weaker since the spacing 
between them in the initial equilibrium position is greater than between the atoms I-2, 2-7, 
etc. Let us determine its function 

03  = E ~  - -  z~), z~ = z [ l  - -  exp ( ~ S z ) l .  

Here w, z are the elongations Of the respective interatomic spacings, and VH, WH, z H are the 
inelastic components of the elongation. 

Keeping the series a fixed, we stretch the lattice by giving identical displacements u 
to the atoms in the series d. To simplify the calculations without distorting the qualitative 
pattern of the system behavior, we assume that the atoms can be displaced only in the vertical 
direction. Then the expression for the strain potential energy has the form 

, , =  + +2 + +2 +2 S 
�9 0 0 0 

O~ 0 0 . 

+ 

where x i are the displacements of the appropriate atoms 

m i  = V ( i  + x i )  2 + I - -  ] / ~ ( i  = i ,  2, 3, 4); 

m j  = ] / ~ j ~ 4  - -  x j-3) 2 -~  1 - -  I (] : 5, 6, 7). 

Here the control parameters are u and n and the state parameters are x i. 

The manifold of the catastrophe M I is determined by a system of four nonlinear algebraic 
equations obtained by equating the partial derivatives of the function 91 with respect to x i 
to zero. The solution for each n fixed preliminarily and changing value of u is sought by 
successive approximations. Grouping all the nonlinear terms in the right sides and denoting 
them by fi, we find the solution x~ for fi = 0. We then evaluate the quantity fi = f~(x~) 
and solve the linear system when fi =-f~" We again calculate the quantity f~(x~) for values 
obtained for x~, etc. The sequence x~ (k = 0, i, 2 .... ) converges to the desired solution. 
In conclusion we determine the elongations of all the interatomic spacings. 

An analogous procedure is realized for all values of u. The elongations of the inter- 
atomic spacings are compared each time with the corresponding quantities obtained from the 
preceding solution. If it turns out that the spacing diminishes between some atoms, then 
the interaction force between them is later characterized by the unloading line. Conse- 
quently, it is necessary to find the specific value of the inelastic component corresponding 
to elongation of the spacing between these atoms, to substitute it in the expression for fi 
and afterwards to set about solving the system for the next value of u. 

As a result of the calculations, equilibrium positions are found by means of whose change 
the crack opening process can be traced. It is shown in Fig. 2b and c, respectively, for 
n = i, u = 3, 2, 1.75, 1.5, 1.17, 0.5 (lines 1-6), and for n = 31, n = 14.8, 14.78, 12, 9.26, 
9.24, 8, 4 (lines 1-7). 
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The manifold Ml, constructed in the three-dimensional space nuP, is a surface with two 
build-ups. Here P is equivalent to the tensile forces Pi applied to atoms of the series d 
displaced a distance u. Curves of the system equilibrium are displayed in Fig. 3 for n = i, 
7, 15, 31 (lines 1-4) obtained by a section through the manifold M l by the appropriate planes. 

3. Starting from the results obtained, it can be concluded that a crack is generated 
at the site of a defect. When there is no internal defect, it occurs on the surface since 
the surface layer is weakened by its nature [4] (there is no series of bonds). The nature of 
the crack opening depends on the system pliability going over to the load in the zone of the 
defect. If it is slight (e.g., for n = i), then the crack opens gradually (Fig. 2b), if it 
is large (n = 31), then the equilibrium opening is replaced by a jump (Fig. 2c). This de- 
duction is in agreement with the result of experimental investigations on the influence of 
loading system pliability (the elastic energy reserve, respectively) on the kinetics of the 
strain and rupture process [5, 6]. 

Let us note that the loading path in M I does not intersect the fold in the first case 
(n = i) but intersects in the second (n = 31), and the jump occurs from the upper to the 
lower sheet of the surface (from the point N I to the point N2, Fig. 3). At this time the 
crack opens suddenly and certain quantity of energy (0.91Es 3) is liberated. The so-called 
snapping occurs [7]. Later, th& equilibrium nature of opening is again replaced by a jump 
when the loading path intersects the second fold (a jump from the points N~ and N~). At 
this time the whole system ruptures. 

Starting from other considerations, an analogous nature of crack behavior is noted in 
[8]. 

Remark 3. The parts of the curves that are constructed approximately are shown dashed 
in Fig. 3. The equality of the magnitude of the energy drop in the system during the jump 
and the area bounded, respectively, by the curve NIKIN 2 and the line NIN2, the curve N~K2N 4 
and the line N3N ~ (Fig. 3, n = 31) was used. A construction was also performed for other 
values of the parameter n. 

During the jump the system skips the equilibrium position at M I and stops, when the 
energy level is restored. In other words, the crack is propagated spontaneously until the 
quantity of elastic energy being liberated is cancelled by the energy consumed in its growth 
(Griffith criterion). The magnitudes of the coordinates here reach the values x I = 12.56, 
x 2 = 12.2 (n = 31), the bonds i-7, 2-6 are ruptured while 2-3, 2-7 are attenuated substan- 
tially. 

After the jump the system evidently tends to return to the equilibrium position (the 
crack starts to close). Consequently, the bonds 3-7, 3-6, 3-5, 2- 7, 2-3 go over into the 
compressed state. A process therefore occurs that is similar to the origination of residual 
compressible stresses in the neighborhood of the crack apex in an overload during cyclic 
loading, and they tend to close it [7]. Further loading does not result in opening of the 
crack until the appropriate compression forces are again replaced by tensile forces. 

Let us also note that a the crack opens, the maximum force goes over into the undamaged 
zone. After a jump opening, compressive stresses occur at the crack edges since the bond i-2 
turns out to be in the compressed state (after the second jump so does bond 2-3 also). And, 
finally, computations show the drop in system carrying capacity as its size and pliability in 
increase (see Fig. 3). 

The authors are grateful to O. A. Volkov for participating in the computations. 
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DETERMINATION OF STRESS INTENSITY FACTORS FOR CRACKS OF COMPLEX 

SHAPE IN ANISOTROPIC PLATES 

V. N. Maksimenko and A. V. Tsendrovskii UDC 539.3:629.7.015.4:624.07 

The application of analytical methods to the problem of fatigue crack propagation 
and branching is complicated by the shortage of information on the stress distribu- 
tion near the tip of cracks of complex configuration. A discussion of this problem 
and a survey of the studies in this area can be found in [i], for example. Below 
we develop a method of solving a problem concerning a system of cracks of complex 
form in an anisotropic half-plane. An efficient algorithm for numerical solution 
of the problem is proposed. A study is made of the effect of anisotropy of the ma- 
terial, the free edge of the plate, and the curvature of the crack on the stress 
intensity factors at the tips of the cracks. 

I. We will examine an elastic plate made of a homogeneous anisotropic material occupy- 
ing the region D = {x > 0}. The plate is weakened by smooth, curved, non-intersecting in- 
ternal notches L7 (j = i ..... k), and is subjected to a system of external forces. We will assume 
that the edges of the notches are free of loads and are not in contact with one another. 

The stresses in the plate are expressed through two analytic functions [2]: 

(:=, T~v, :v) 2 Re (~t,2,, - -  ~, ,  1 )r  ( z~) ,  z~ = x + ~ V  (v = t,  2), ( i .  1 ) 

where ~ are the roots of the characteristic equation. 

We seek the unknown functions Sv(z~) in the form 

"I 

r (z~) = r  (z~) + r  (z~), ( i .  2 )  

Henceforth, we use the notation in [3]; r is the solution for the half-plane without 
notches from the prescribed system of external forces. The values of r will be assumed 
to be known. The functions r v) were given in another form in [4]. 

The functions r determined by Eqs. (1.2) satisfy the prescribed system of external 
forces, including the boundary conditions on the edge of the plate x = 0 and at infinity. 

Inserting the limiting values of r from (1.2) into the boundary conditions for L 
and parameterizing the contours L i = {t --~J(~); I~I<i}, we obtain the following system of 
singular integral equations of the problem [3] to determine the unknown complex functions 
~ ( t )  = {~w(t) l t  ~ Lj ;  ] = 1 . . . . .  k} :  

I h 1 
F~ (~, ~) z~ (,1) d~ 

--I a ~ l  --I 

{~s (~, ~) X, (~l) + k~ ~ (~, ~l) Xs (q)} d~l---- ]j(~),, 
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